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Outline

Basics

Trial Wave-functions

(Brief) Intro. To (some) Quantum Chemistry
Survey of Recent Applications

Future Outlook

Today we will focus on finite systems!
Tomorrow focus will be on solids!




First-Principles Computational Physics/Chemistry

: . :
Chemistry: Schrodinger quatlor?
» chemical reactions Theory of electrons and ions

* molecular properties

Exotic electronic
phases:

* Superconductivity
* Magnetism

* Charge ordering

* bonding patterns/formation

* solvation properties
* surfaces \

Thermodynamics:
e crystal structures
* phase transitions
* strength

* defects and
dislocations

\

Optical and Transport Properties:
* spectra

* conductivity

* viscosity

e diffusion

Plasmas:

* equilibrium prop.
* kinetics

* instabilities

* shocks



Born-Oppenheimer Approximation

ih 0 W(F,1) = HY(7,1)

m,..<<m__ =¥ they move

elec prot

BO leads to independent

on different time scales solutions for electrons

and ions (different
approximations) !!!

Gy, R+ Eyy(R) [SR) = E &R)

If finite gap between ground state and 1°t ¢

excited state, assume electrons remain in N
the ground state! (Electrons at T=0 K !) Solve ionic problem!




First-Principles Electronic Structure Theory

n 72 = D = D - BO,, (= Only input:
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Density Functional Theory

@ Mean-field cost, well developed codes, easy to learn, HPC.
@Hard to improve, accuracy is unknown, fails for correlated problems!

Quantum Chemistry Methods

@ Very accurate and robust, well developed codes.
@ High cost(>N?), very hard for solids, complicated, no HPC.

Quantum Monte Carlo

@ Accurate, improvable, trivially parallelizable, ok scaling (N3)
@ High cost, human time intensive, small community, problems at high Z.



Why QMC?

QMC: stochastic solution of the Schrodinger equation
— Exact for bosonic problems

— Sign problem for fermions: approximations required

Stochastic methods offer the main alternative for exact results in classical many-
particle problems.

— Can we reach the same scenario on fermionic problems?

Some Strengths Some Weaknesses
Many body problem = Many-body problem
Direct treatment of electron correlation . Strong size effects in solids
. Valrl?.tlonal results: Systematically improvable « Hard to simplify problem (symmetry, core, etc)
solutions _ :
« Framework for accurate (possibly exact) » High computational cost
results

, , _ = Fixed node approximation hard to control
Low scaling with particle number

Efficient use of massively parallelized | High learning curve

resources « Small Community |
. > 90% efficiency on > 250k CPU « Slow and uncoordinated development

« Efficient GPU implementation



Basic Workflow

As we will see in the afternoon, QMCPACK calculations on finite systems are easy!
* The converter takes care of most of the work!
e Basic optimization block will work with almost any wave-function!
* Good ECP libraries exist! Grab one and start calculations!
* For many problems, standard SJ wave-function is good enough. Should

always start here.

Run GAMESS

rungms HF.inp > HF.out
convertdgmc —gamessAscii HF.out
gmcapp optm.xml

gmcapp vmc_dmc.xml
Optimize Wave-function gmca

Use convert4gmc

Run VMC and DMC




Effective Core Potentials for Chemistry

*

Ze —
Vouis === 2| = VECP=Vloc<r>+2vl<r>a<r-rm,m(r)g,m(r)

o i a

« Remove core electrons. Y =ECJ""€'W
* Typically expanded with Gaussians. ’
e Should be used with corresponding basis sets if available!

» 2 well tested ECP collections for molecules: BFD and Casino.

Choose an element .
sssss mMo '
am — More ST
—— PR Ik Tomorrow! SRR R TR T I e
.-YZrNbMo T RuRth/\nglnSn..I. = :
.-LaHfTaWRcOser(Aquﬂmm&.. S
Gaussian, Gamess and Molpro format. Tabulated, Gaussian, Gamess format.
http://burkatzki.com/pseudos/index.2.html http://vallico.net/casinogmc/pplib/



Trial Wave-Functions

What do | need to evaluate?
For VMC, DMC: { W), Vi), Vi)

}

.V Viin|¥(7)

For optimization: { V ¥(r), Vﬁiln“lj(?) }
* Critically important in all QMC calculations:
— Uncontrolled approximations depend on W
— Systematic effects also depend sensitively on W..
— Defines cost and accuracy!
e QMC can handle complicated wave-functions.

— If we can evaluate it in real space, we can use it!



Basis Sets for Molecules

* Single particle states are expanded in a linear combination of atom-

centered basis functions.

¢k(’7;)= ECiCH (}_’;_RI)

Slater-type Orbitals (STO)

Cn,l,m(r’e’(p) = Nrn_le_arifl,m(HJP)

Gaussian-type Orbitals (GTO)

Spherical

G, (r0.90) = Nr'e™Y, . (6,0)

Cartesian

an My N

y Z

(7) = ere"‘”zx”xynyz ‘

n

— Gaussians are the most popular basis function. Gaussian integrals can be performed analytically!

— GTOs have a poor shape close to the nucleus. Fixed linear combinations (contractions) are used to
improve the shape of the basis (so that basis functions resemble realistic atomic orbitals)

* Internally, QMCPACK transforms all radial basis functions into a numerical
representation with cubic (or quintic) Spline interpolation.

— Faster evaluation! Cleaner code!

— Both cartesian and solid harmonics for angular representation.




4D, (kcal/mol)

Basis sets

Basis sets are (almost) ubiquitous in molecular calculations.

Considerable effort has been put in developing hierarchical basis sets of increasing

daCccuracy.
— Molecular properties converge slowly basis set size.

Typical basis sets:
1. Minimum basis sets: 1 basis function per electron pair
2. Pople basis sets: STO-nG, 6-31 G, etc.
3. Correlation consistent basis sets: cc-pVXZ, aug-cc-pVXZ, cc-pCVXZ, etc; where X is {D, T, Q, 5, etc}.
4

Atomic Natural Orbital basis sets: e.g. ANO-TZ
K. Peterson, J. Chem. Phys. 99, 1930 (1993)‘.‘7

14 25 - 70
121 —m- ccpVXZ E 20 GO'E -8~ copVXZ
104 =z — S
- @ aug-ccpVXZ - 50+ ., - & aug-cc-pVXZ
of . 3 154 1 g
'- = e 404
61 3 104 §
N 30-
2f 51 20-
ot - —— . 0 - r— . 10 - : =
vDZ vT1Z vQz V5Z est.CBS vbDz ViZ vaz V5Z  est.CBS vDZ VTZ vQz V5Z

HF energy converges exponentially fast: |E,.(X)=E; . +ae™*

Correlation energy converges very slowly: |E__(X)=E» +aX™

corr corr
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Slater Determinants

/{(bk} Single particle orbital set, e.g. DFT, HF. Let M, = ¢, (i‘;)\

AD 8, ()
D(F)=det(M)=det| : .. i
@, (1) ¢, 7y)
%iD _ e = 2
22 - EM,.,{ Ve, (%) Vl,-)D =S MV,

<

)

Unoccupied —

orbitals

[Fele-lelel]

HF

determinant

A

Double
excitation

Triple
excitation

Single
excitation

4

Typical operation cost:
* Evaluation of each {¢ 3: N
— With localized orbitals or splines: O(1)
* Inverse and determinant of M: N3
* Single particle update to M1: N2
e Evaluate all gradients and laplacians:

—  From scratch: N3
—  With known inverse: N2

— For asingle particle: N

Occupied

orbitals

[F]ele=el]

In a basis set, Slater determinants are a
complete many-body basis.

— Leads to combinatorial number of
determinants. Given M orbitals, all possible

ways to choose N.
Hartree-Fock state is the best single
determinant representation of the

system.

—  Typically, methods are based on excitations out
of HF determinant.

Figure from: G. H. Booth, Nature 493, 365—-370 (2013).
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Configuration Interaction

* Full CI: exact diagonalization of Hamiltonian in determinant basis
— Scales exponentially with system size.
SR . w) = >c,
— Exact solution within given basis set! (M)
g
N

Di> p— Hi’jCj =8Ci

 Truncated ClI: include all determinants up to a given excitation from HF.

v- »y G

ie{S.D,...}

D,)

— Better scaling with system size: N**k, when up to k excitations are included.

— Itis not size extensive! (Accuracy is not uniform as a function of system size)
Can you think why?

 Complete Active Space (CAS)-CI: Instead of limiting by excitations, limit
the number of active orbitals. CAS-Cl means full-Cl on a subset of the
single particle orbitals.
— Still scales exponentially, but on a much reduced space.
— Useful (needed) in strongly correlated systems.



Electronic Correlation: Dynamic vs Static

In simple terms:

e Static (or strong) correlation: Contribution from important determinants!
Their contribution to the total many-body wave-function is large, e.g. > 0.1.
— If only HF has large weight, the system is considered single reference. In this case,
perturbation theory based on HF should work!
— If multiple determinants have large weights, they must all be considered in
perturbation theory, e.g. MR-CI.

— Typically related to nearly degenerate low-energy orbitals. Multiple slater
determinants are close in energy, true many-body state has contributions from
many of them.

— Symmetry constraints can also introduce static correlation!
* RHF can not dissociate into fragments! UHF can!
* Dynamic Correlation: Combined contribution of exponentially large number
of “unimportant” determinants.
— Main contribution from short-range correlations (electrons repel each other!)
— Other contributions like dispersion interactions!



Jastrow Functions - |

¥ (7) = DFHDFE e’

Slater-Jastrow

—1/2 = Spin

d In(\W(r)) _J_1/4 = spin
or..
y r; —=0 —Z C - I

Cusp conditions must be satisfied exactly
to prevent divergence of the local energy.

‘11(7'12)

1PW

27 PW
125 PW
343 PW
1331 PW
6859 PW
15,625 PW

Hartree-Fock

-2

Correlates electrons explicitly. Excellent for dynamic correlation!

— Constructed to satisfy e-e and e-l cusp conditions.

— \Very hard to treat in deterministic methods. Need for multi-electron repulsion

integrals!

Only bosonic correlation. Does not modify nodes!

— No improvement to fixed-node error.

Gruneis, et al., JCP 139, 084112 (2013).

15



Jastrow Functions - ||

J(r)= wl rut use

u'” = Ezckfk(?i _I_él)
kil

= Y3 Yo f F -F )

k o.piy,jg
a.p - -
=22 2k G )
kI a,B i, ,jﬁ

Each term is expanded with an atom-centered basis set
Variational parameters fully optimized with VMC.
If needed, radial functions must satisfy cusps.

Il

0.35

Energy Error (mHa)

1-Body J

2-BodyJ

[E———

1-2 Body J

1-2-3 BodyJ

DMC




Jastrow Functions - ||

In addition to standard basis functions
like exponentials, gaussians and
polynomials, other popular functions
used to expand the Jastrow are:

a;;.j

Pade functions

1-q(r; /rcut)

f(’}j)=

Polynomial-
Pade functions

Electron-ion Jastrow Function (J1)
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Electron-electron Jastrow Function (J2)
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QMCPACK can use numerical basis functions (splines)!




Quick Survey of S-J

|CASINO DMC (ADF QZ4P, dt —0) [this work]

& O/ P /\/\1/\ " ]/\ e Vil A 7
4-5} NN NV VY \\/\/ /“/\/ A v l
Nemec, et al., JCP 132, 034111 (2010).
$22 Test set (kcal/mol): P RN J QMC
PBE: 250  MP2: 0.88 ‘ I VS.
PBEO: 230  CCSD(T)-CBS: O cCSD(T)
PBE-D3: 0.44 QMC-SI: ~0.27 ’_(
: X , | agree to
B3LYP: 3.66 0.1 kcal/mol
B3LYP-D3:  0.36 X )_(
complex reference FN-DMC” Ab FN-DMC"® A°

ammonia dimer -3.15 —3.19 + 0.09 0.04 —3.10 + 0.06 —0.05

water dimer -5.07 —5.34 £ 0.09 027 —5.15 £ 0.08 0.08

hydrogen fluoride dimer —4.58 —4.68 + 0.10 0.10

methane dimer -0.53 —048 + 0.08 -0.05 —0.44 + 0.05 -0.09

cthene dimer —148 —138 + 0.13 -0.10 —1.47 + 0.09 -0.01

cthene/ethyne -1.50 —122 £+ 0.12 -0.28 —1.56 + 0.08 0.06

benzene/water -329 —3.69 + 024 0.40 -353+£013 024

benzene/methane -145 —0.63 + 021 -0.87 —130 + 0.13 -0.15

benzene dimer T =271 =377 £ 039 1.06 —2.88 + 0.16 0.17

Dubecky, et al., JCTC 9, 4287-4292 (2013).
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Multi-Determinant Wave-Functions

W)=Y e, > d D FOD, (7Y

k q
Multi-Slater Determinant Jastrow

CSF, = > d, D, ,,(F)D,  (F")
q

Configuration State Function (CSF): Space and spin adapted linear
combination of Slater determinants.

— {d,} are determined by symmetry
Optimize linear coefficients with VMC.

— Systematic reduction of fixed-node error!
Limited applicability in extended systems.

— Expansion is not size-consistent!
Recover both static and dynamic correlation

— Jastrow and linear coefficients must be optimize together to obtain optimal results.
— Efficient and robust optimization algorithms are crucial!



Basic Algorithm
/ For Local Energy \

W (F)= eJ(F)Eckdk,qD D, =’ PA®F)
k.q

k.q"

%i (lnka + lnka)

k.q|

V.AGF) =Y c,d, ;D 4D
k.q

V:D V2D _ _
2 — i k,ql i k.ql ®
VIAGF) = Y a,,D, 1D, , ot +2(Vi1nDk’qT) (Vilnz)m))
k.g!

\\ k.q k.ql /

For VMC Optimization

Traditionally, evaluate each determinant independently.
— scales linearly with number of determinants.

20



Fast Algorithm

- Instead of evaluating every determinant independently, we can evaluate the
ratio of each determinant and a reference determinant using the Generalized
Matrix Determinant Lemma.

Matrix Determinant Lemma Generalized Matrix Determinant Lemma
det( A g T
et| A+ uv - det\A+UV -
= (1+v" Au) = det(1+ V" AU)
det(A) det(A)
I. Single Particle Orbitals I11. Table T iz
. g § 40
— ES @
Ly F;: =
fi{ 4 — N 2
EK F5 7 X <Q
Ly |z o
o = S
I'V. Double excitation: {ei,es— g2,g3} g 4
""" g 10 detEval —— |
2 1) T, 5 detEval + update - 50% acc ——— -
0 1 . ldetEv.’:}I+upcliate-1|00% acc —
(‘ ‘ ‘ ‘ ‘ ) 34) 0 2 4 6 8 10 12 14 16 18
______ Number of CSF (x1 03)

B. K. Clark, et al., J. Chem. Phys. 135, 244105 (2011). 21



Some Applications of MISD

Number of CSF 3567
- o © ' ' ' '
<< O AN < < E o
— [e)] 0 ~ AN 1O ™M
'76-39 . T T T T T V'I\ACI T T »35‘675 %\ 5 .
-76.395 |- ) DMC +—— - E
* Exact ™"
-76.4 | g -35.68 ° .
. L ] m w . .
76405 S Lsess <, Tri-Radicals
S 7641 | . 5>
< H,O Molecule . £
3 -76.415 - > 3560
[} = o '
5 7642 . @
® * ]
-76.425 | = - W 35605
-76.43 | % g
. L e, -35.7
76.435 Hag
-76.44 | | | | | | L
0.93 0.94 0.95 0.96 0.97 0.98 0.99 1 -35.705 1' — 0' 1 E— 0'0'1"‘ B 0.001
Sum of squares of initial CSF coefficients ’ ' '
— 14
2
= 1
© . . . .
] Systematic convergence of atomization energies!
5 10
g s
w
s
g 6
8
€ 4
]
g, 11 l - 1
< 06\6’ Qo"’ & & S g0 00" S & & & & A‘g\’ ‘VQ I~
S ('Co S e A@Q’QQ o 5('» '\, o@ @ <\\ @Q'» @Q ®
PR RUSROS RN @ F & ®
" 9 O e
& O
L. Koziol, M. A. Morales, JCP ?? (2014). Morales, et al. J. Chem. Theory Comput., 2012, 8 (7), pp 2181-2188
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Choice of Orbitals and Configurations

MSD calculations have 2 important considerations (see afternoon tutorial):

1. Choice of orbitals

* Ultimate accuracy of MSD expansion depends on choice of orbitals, e.g. HF, MP2, CASSCF, DFT, ...

2.  Choice of determinant configurations, given 1).

. No general relation between important configurations across different orbital sets.
. # of configurations is exponential: currently we rely on QC methods to provide an initial screening.
-17.265
Challenge to QMC groups: solve 47266 * *}ﬁ
-17.267 | . >
©
T -17.268 | L)
>
o %
o -17.269 | x
L
e 72t}
) ol
-17.271 .
.4
-17.272 | CISD —=— Tox
CASCI| +—e—
SOC| +-x-
-17.273 ' ' ' '
0.975 0.98 0.985 0.99 0.995 1
Sum Squares Cl Coeff




Backflow Transformations: Operations

ym \VAL B
1. a a a a ij = l'x] 2
x“=r"+ e -r 2. = g, w 0.
C Zn( U)( C ) W P =@ (E)|  |@h = af; @i = axa(ziﬁ
B; =V x;

T N
3. ij=((Pki)_l 1 aD

Dag,
- 4, / D = det(q,,) X
E Py

o J VéInD = EF/?'A?ﬁ

Transformation can be generalized to add
electron-lon and three body terms. V:inD = EB;‘ E EA“ﬁAay

a.By Jj.k

Single particle updates change all quasi-particle
coordinates.

X kaF,i - 5jkE‘/jm(pr/fz}/

* More expensive evaluation. Single electron
moves might still be more efficient! K

—/

As seen yesterday, Feynman-Kacs formula naturally leads to two-body Jastrow correlations at first order
and at second order to Backflow transformation and three-body Jastrow terms.

Y. Kwon, et al., “Effects of three-body and backflow correlationsin the two-dimensional electron gas.”, PRB 48, 12037 (1993).
P. Lopez-Rios, et al. “Inhomogeneous backflow transformations in quantum Monte Carlo calculations.”, PRE 74, 066701 (2006).



Application of BF and MDF+BF

100 -0.1070 —————F———1———

98 ]
- —0.1075 }-| SJ-3B L -
0 94
5, > -0.1080 | SE
K] (o) o
B c o
T | I==vmeThiwer W _0.1085 | ' .
BN cmemer e Y

88 VMC - Seth, et al. MISD+BE ' 1

6 1| umC Toulouse et al ~0.1090 \ 1

DMC - Toulousé, et ai. SJ -
) | FN SJ-BF .
Li Be B C N o F _01095 s 1 L 1 A 1 " 1 i
0.00 002 0.04 006 008 0.10
M.A. Morales, et al. JCTC 8, 2181-2188 (2012). Variance (xr*)
Y. Kwon, PRB 58, 6800 (1998).
100
o - Backflow transformations are very effective for
3 homogeneous systems, e.g. HEG.
g 08 - Promising path for molecular systems, in
g particular when combined with MSD
® 97 _ *  Short MSD expansions (~50-100 CSF) combined
.. DMC-Browneral. 2007) | . PR with BF lead to same accuracy as much longer MSD
96 | -+« VMC - Brown et al. (2007) i ~
— % CE needed for chem. acc. I (Up to ~3000 CSF)
i Be B ¢ N o F M - Typical reduction of variances by ~30%-50%.

Seth, et al. J. Chem. Phys. 134, 084105 (2011).



Other Wave-Functions

Exciting developments with

novel wave-functions

* Pairing wave-functions

* Controlled determinant g
expansions

Linear-Scaling GVB

N/2

iaia
W, Gve = Co |(I)o> - zci (I)ibib>
i=1
- CAS(4.4)
W, Gvei0 = Ecij (I)ij>

7}

F. Fracchia, et al., “Size-extensive Wave Functions for Quantum

Monte Carlo: A Linear-Scaling Generalized Valence Bond Approach”,

JCTC 8, 1943 (2012).

Resonating Valence Bond

N/2

@, (R)=A] [oG".7)

M. Marchi, et al., “Resonating valence bond wave function with
molecular orbitals: Application to first-row molecules”, JCP 131,
154116 (2009).

lPSTU — pf _(I)T A ‘EH wi

- —@" 0
M

=3 Mo, Ghe,
k.l

&' = Pairing Matrix

M. Bajdich, et al., “Pfaffian pairing and backflow wavefunctions for
electronic structure quantum Monte Carlo methods”, PRB 77,
115112 (2008).



Quantum Chemistry Methods — MCSCF

Already discussed FCI, Truncated-Cl, CAS-CI.

— Performed on a given set of orbitals. Approximate Cl
methods depend on the set of orbitals.

Multi-Configuration Self-Consistent Field

— Combines Cl with orbital rotations. Obtains best
variational solution within a given wave-function anzats
(selection of determinants).

* HF orbitals are not optimal for multi-determinant expansions. MCSCF
optimizes orbitals for a given expansion!

— Performs a Cl calculation with a selection of
determinants. In principle can be very general.

CASSCF: Performs calculation on a full CAS. N electrons in M orbitals.

Multi-Reference Cl or Second-Order Cl

— In addition to a selection of orbitals (e.g. CAS), include all
excitations from all orbitals up to a given level.

MR-CI, SOCI, etc

CAS-Cl, CISD, etc

Active

HF

Frozen



Survey of Some Applications — Water and Aqueous Systems

Benchmark DFT and force fields on bulk systems

o
N
G

=]
i
«

Mean Absolute Difference (mHa)
o o
5 S

W PBE

& PBE-D
PBEO
“BLYP

. WBLYP-D
B3LYP

& B3LYP-D

i optB86b
optB88

I optPBE
vdW-DF
vdW-DF2
vdW-TS

TIP5P-32 PIMD-64

M. A. Morales, et al. JCTC 10, 2355 (2014).

1.9 -
PBE-DFT
QMC e |
18T cesp(m) o . ;
- 17F . . . . . .e
— | L) ’/_w"v .
o 18 ) e @ >"' (-] g0
N H, Hy S
9 s} ¢
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- Proton Transfer |¢
< 14}
i L]
L 13 8
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© g2t
g . 4(0:H")
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1 . . . . L T tEes e
2.2 23 24 25 26 27 28
d(0,0,) [A]

M. Dagrada, et al.,, http://arxiv.org/abs/1312.2897.

Energetics of water clusters

10 T T T T T
I “ L
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Gillan, et al, J. Chem. Phys. 136, 244105 (2012)
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. Santra, PRL 107, 185701 (2011).



Survey of Some Applications — Excited States

- Recent Development: Direct Photo-active Formaldimine: ROKS geometries
optimization of excited state bi | | s © DMC 7
wave-functions and geometries lomolecules | | P
. L .
- Many excited states can be very Formaldehyde Fomaldimine || 23 ¢ Mcscr -1
40 B
. _f ‘/”2 g
challenging to mean-field o—c< e 5
methods E
Protonated Schiff base = A
% 30k 2
Se—c N Se—=|® o
C=C B —
. / \ I
Ground and Excited-State
2.0 -
.. . 0 15 30 45 60 75 90
Geomet ry Optl m |Zat|0n Torsional angle (deg)
o “ v
W 45 _Pmmlnutcd S'chiff hlux'c moiicl: R(I)I(S gc'nmclri::x i
’ ‘} :; s 5 I
v v v
acrolein VU acetone ¥ Y M ¥ PAA v S agf Th e a2
- 010 Ni!g : 2 B;é;? ; J i
? 008 5/4,3‘_"::’1: 1T :Rfé?_‘“,éﬁ W‘ %b 35
.:E' LC-BLYP ® 1 s
3 00 1 § 30t o ROKS -
2 | E ., A TDDFT
8 004 1 ;<‘ I CS”G'\“‘.’ ® DMC
é " sk 4
é o -“ b —o——<)__,0_——0"“')"' 0\—0\0\9\0__‘;
. 2.0f ¢
o0 acrolein _acetone MCP PAA acrolein _acetone MCP PAA A L , | ) ' L
0 20 40 60 80 100 120 140 160 180
R. Guareschi, et al., “Ground and Excited-State Geometry Optimization of Torsional angle (deg)
Small Organic Molecules with Quantum Monte Carlo”, JCTC 9, 5513 (2013).

F. Schautz, et al., “Excitations in photoactive molecules from quantum
Monte Carlo”, JCP 121, 5836 (2004).



Barrier Heights Di-radical Molecular Systems

Reaction Pathways C.H4 o vucio -
. 5 « LRDMC/JS
planar twisted £ S0« .VMCUAGP -
AEFN_DMC[J-LGVB] £ LRDMC/JAGP .*
,l,"'v‘+ . 5 40
BHyor € ., g
’eV - - &
0=
(H)—‘ . —|
E 035 : -
‘ a4 bp_y_ 10 s
S. Saccani, et al. “Minimum energy pathways via Y+¥+ + 01 0 30 0 X

quantum Monte Carlo”, JCP 138, 084109 (2013).
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Outlook — What’s the next step?

Better wavefunctions
— controlled MSD expansions + BF

— Orbital and configuration selection within QMC
More estimators: Forces, second derivatives
Excitations

More application!!!

— Correlated systemes.



